See-irf.ru

Обзор строительной техники
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Коэффициент теплопроводности кирпичной кладки

Теплопроводность кирпичей

теплопроводность кирпичной стены

Актуальность именно такого выбора подтверждается его неоспоримыми преимуществами. Среди них экологичность, морозостойкость, пожароустойчивость — и все это уже не говоря о прочности и долгой службе, которая подразумевается априори. Наряду с этим при возведении объектов важно учитывать теплопроводность кирпичной стены.

В настоящее время активно распространены несколько видов. Среди них выделяют следующие:

Подобные блоки могут быть самой различной формы и фактуры. Похожи они только своими геометрическими параметрами. На самом деле различия гораздо глубже:

  1. В составе керамического лежит глина и различные добавки.
  2. Силикатный получают из кварцевого песка, извести и воды.

Теплопроводность красного кирпича (керамического типа) имеет настоящее народное признание. И это неспроста: он встречается в самых различных интерпретациях (пусто- и полнотелый, облицовочный и имеющий интересную фактуру), но каждое из них будет уникальным и подойдет для возведения любого типа зданий.

Рассчет теплопроводности стен: таблица теплосопротивления материалов

Во многих случаях при выборе материала для строительства дома мы не вникаем, каково теплосопротивление строительных материалов, а полагаемся на «народные» методики. Самые популярные из них: «как у соседа», «как раньше», «смотри, какой толстый слой», и – венец искусства – «вроде, должно быть нормально». Что ж, ваш дом – вам и решать, какому методу отдать предпочтение. Но чтобы точно ответить на вопрос, достаточно ли тепло будет в вашем доме зимой (и достаточно ли прохладно в летний зной), нужно знать теплосопротивление стены. Откуда его можно узнать, как считать теплопроводность стены и как это поможет при ответе на ваш вопрос? Давайте разберемся по порядку.

Итак, немного теории, чтобы определиться с терминами и понять, как рассчитать теплосопротивление стены.

Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Такой вид теплопередачи, обусловленный тепловыми движениями и столкновениями молекул, называется теплопроводностью.
Итак, теплопроводность – это количественная оценка способности конкретного вещества проводить тепло.
Теплосопротивление – величина обратная теплопроводности. (Хорошо проводит тепло – значит, слабо теплу сопротивляется. Следовательно, обладает высокой теплопроводностью и низким теплосопротивлением).
То есть, при строительстве лучше использовать материалы с низкой теплопроводностью (высоким теплосопротивлением) для лучшего сохранения тепла.

Как рассчитать теплопроводность стены?

Чтобы рассчитать теплосопротивление слоя нужно его толщину в метрах разделить на коэффициент теплосопротивления материалов, из которых он выполнен.
Как рассчитать коэффициент теплопроводности? Эти расчеты делаются в лабораторных условиях. Тем не менее, узнать его несложно: нормальный производитель всегда предоставляет эти данные, указан он и в СНиПе в разделе «Строительная теплотехника», правда, там представлены не все современные материалы. Если вы хотите знать теплосопротивление материалов, таблица с некоторыми из них представлена на данной странице.

Как пользоваться коэффициентом теплопроводности? В СНИПе указано два режима эксплуатации А и Б. Режим А подходит для сухих помещений (влажность меньше 50%) и для районов, удаленных от морских берегов. Для московского региона, например, подходит режим А. Таким образом, теплосопротивление стен по регионам может отличаться.

Теплосопротивление слоя =толщина слоя (м)
Коэффициент теплопроводности материала ( )

Теплосопротивление многослойной конструкции считается как сумма теплосопротивлений каждого слоя. (В случае с одним слоем все просто – его теплосопротивление и будет теплосопротивлением всей конструкции.)

Теплосопротивление конструкции = теплососпротивление слоя 1 + теплосоротивление слоя 2 + и т.д.

Единицы измерения теплосопротивления —

Рассмотрим, как рассчитать толщину стены по теплопроводности на конкретных примерах.

Пример 1

Стена толщиной в полтора кирпича, или, если перевести в международную систему измерения, 0,37 метра (37 сантиметров). Как посчитать теплопроводность стены?

Все, кто имел опыт работы с кирпичом, знают, что кирпич может быть разным. И коэффициент теплопроводности кирпичной кладки, соответственно, тоже разный. Кроме того, теплопроводность кирпичной стены на обычном цементно-песчаном растворе будет ниже, чем коэффициент отдельного кирпича. Как посчитать коэффициент теплопроводности стены в таком случае? Для расчетов будет правильно использовать именно значение для кладки.

Вид кирпичаКоэффициент
теплопро-
водности*,
Кирпичная кладка
на цементно-песчаном
растворе, плотность
1800 кг/м³*
Теплосопроти-
вление стены толщи-
ной 0,37 м,
Красный глиняный (плотность 1800 кг/м³)0,560,700,53
Силикатный, белый0,700,850,44
Керамический пустотелый (плотность 1400 кг/м³)0,410,490,76
Керамический пустотелый (плотность 1000 кг/м³)0,310,351,06

(*из межгосударственного стандарта ГОСТ 530-2007)

Итак, мы убедились, что не все кирпичи одинаковы. И теплопроводность кирпичной кладки в зависимости от вида кирпича может отличаться в 2 раза. Ваш дом из какого кирпича? А мы рассмотрим самый лучший результат (плотность кирпичной кладки полтора керамических пустотелых кирпича). В данном случае теплосопротивление кирпича 1,06 . Запомним результат и перейдем к следующему примеру.

Пример 2

Допустим, мы хотим построить дачный домик из бруса сечением 15 см. Снаружи и изнутри отделаем вагонкой. Что получим? Коэффициент теплосопротивления дерева поперек волокон (данные из СНиПов) составляет 0,14 . Теперь делаем расчет теплосопротивления стены: толщину материала разделим на коэффициент теплопроводности.

Для бруса (это 0,15 м дерева) теплосопротивление составит (0,15/0,14) 1,07 .

Для вагонки (толщина 20 мм или 0,02 м) – 0,143 . Да, вагонка с двух сторон, значит 0.143 х 2 = 0,286 . Справедливости ради заметим, что на практике теплосопротивлением вагонки чаще всего пренебрегают, так как на стыках она имеет еще меньшую толщину, следовательно, меньшее теплосопротивление материала.

Запомним общее расчетное теплосопротивление стены из 15-исантиметрового бруса, обшитого изнутри и снаружи вагонкой, –
1,356 .

Чтобы не было необходимости делать расчёт теплосопротивления стены для каждого материала, в приведенной здесь таблице мы собрали данные по теплосопротивлению материалов, часто используемых при строительстве домов.

Таблица теплосопротивления материалов

МатериалТолщина
материала (мм)
Расчетное теплосо-
противлениеа (м² * °С / Вт)
Брус1000,71
Брус1501,07
Кладка из красного кирпича
(плотность 1800 кг/м³)
380
(полтора кирпича)
0,53
Кладка из белого силикатного кирпича380
(полтора кирпича)
0,44
Кладка из керамического пустотелого кирпича (плотность 1400 кг/м³)380
(полтора кирпича)
0,76
Кладка из керамического пустотелого кирпича (плотность 1000 кг/м³)380
(полтора кирпича)
1,06
Кладка из красного кирпича
(плотность 1800 кг/м³)
510
(два кирпича)
0,72
Кладка из белого силикатного кирпича510
(два кирпича)
0,6
Кладка из керамического пустотелого кирпича (плотность 1400 кг/м³)510
(два кирпича)
1,04
Кладка из керамического пустотелого кирпича (плотность 1000 кг/м³)510
(два кирпича)
1,46
Кладка на клей из газо- пенобетонных блоков (плотность 400 кг/м³)2001,11
Кладка на клей из газо- пенобетонных блоков (плотность 600 кг/м³)2000,69
Кладка на клей керамзитобетонных блоков на керамзитовом песке и керамзитобетоне (плотность 800 кг/м³)2000,65
Теплоизоляционные материалы
Плиты из каменной ваты ROCKWOOL ФАСАД БАТТС501,25
Ветрозащитные плиты Изоплат250,45
Теплозащитные плиты Изоплат120,27

Снова обратимся к СНиПам: теплосопротивление наружной стены, например, в Московской области должно быть не меньше 3 . Помните цифры, которые мы получили? В Российской Федерации нет районов, для которых эта величина составляла хотя бы 1,5 (не говоря уже о значениях еще ниже). Для сравнения приведем такие данные: в Германии эта норма определена не менее 3,4 , в Финляндии — не менее 5 (это, разумеется, уже не по нашим СНиПам, а по их регламентирующим документам).

Эти требования — для домов постоянного проживания. Если дом (как написано в СНиПах) предназначен для сезонного проживания, либо отапливается менее 5 дней в неделю, эти требования на него не распространяются.
Итак мы можем сделать вывод, что в домах со стенами в 1,5 кирпича, либо из бруса в 15 см проживать постоянно… нежелательно. Но ведь живем же! Да, только цена отопления 1 м³ из года в год становится все выше. Со временем все домовладельцы перейдут к эффективному утеплению домов — экономические соображения заставят заранее рассчитать теплопроводность стены и выбрать наилучшее техническое решение.

Существует несколько способов, которые позволяют снизить тепловые потери.

Воздушные зазоры делаются в кирпичной кладке для уменьшения накопления влаги в стенах и снижения коэффициента теплоотдачи.

Прослойку воздуха в стенах правильно обеспечивают следующим образом:

Постоянная циркуляция по каналам воздуха внутри кладки возможна, если она на последнем ряду не закрывается перекрытием из любых стройматериалов или стяжкой из раствора.

Для частного строительства важно, чтобы, не понеся больших расходов, добиться от кирпичной стены существенного снижения коэффициента λ.

Теплопроводность разных видов лицевого кирпича

Внешний вид здания это его визитная карточка. Использование лицевого кирпича позволяет создать эффектный внешний вид и улучшить защитные функции от потери тепла и от повреждения стен природными факторами, как действие ветра, солнца, дождя.

Облицовочный кирпич отличается от рядового по теплопроводности, по привлекательности внешнего вида. Классификация кирпича по теплопроводности, выглядят так:

  1. Лидером является гиперпрессованный вид кирпича, с показателем: 1,1 Вт/м °С.
  2. Следующим будет клинкерный кирпич, у него показатели 0,8 — 0,9 Вт/м °С.
  3. Более низкие показатели у силикатного кирпича 0,4-0,8 Вт/м °С.
  4. У полнотелого керамического облицовочного показатель 0,36-0,52 Вт/м °С.
  5. Лидером является поризованный или пустотелый керамический, его коэффициент равен 0,22-0,43 Вт/м °С.

Во время планирования можно подобрать сочетание разных материалов, чтобы создать комфортную атмосферу в помещениях. При планировании желательно предусмотреть все возможные варианты потерь тепла. Если в строительстве применяются традиционные материалы: бетон, кирпич, в таком случае обязательно использовать дополнительные средства утепления.

Для сохранности качества облицовочных изделий следует придерживаться правил:

  • Хранить облицовочную керамику в закрытом сухом месте, укрытом от дождя, снега и ветра на подставке.
  • При осадках монтаж изделий не допускается!

Полнотелый керамический кирпич

Керамический кирпич создан на предприятиях из натурального сырья. У него много достоинств, но величина теплопроводимости не постоянна. Если в условиях лаборатории

это значение будет 0,56 Вт/(м∙К). В реальных условия, где действуют разные природные факторы, показатель теплопроводности будет зависеть от:

  • Влажности, то есть сухой кирпич лучше сохраняет тепло. Во влажных условиях теплоизоляционные свойства снижаются.
  • Цементный шов хороший проводник тепла. Очень толстый шов является дополнительным мостиком промерзания.
  • Строения и структура изделия. Важным является процентный состав сырья, соблюдение технологии обжига, пористость готового изделия.

Коэффициент теплопроводности условно можно принять как 0,65 – 0,69 Вт/(м∙К).

Пористая керамика

Пористый или пустотелый кирпич считается относительно новым материалом. Ценят его за качества:

  • Производство его менее материальноемкое.
  • Не большой удельный вес.
  • Низкая теплопроводимость.

Низкая теплопроводность пористой кирпичной керамики это результат присутствия воздушных камер. Как известно теплопроводность воздуха 0,024 Вт/(м∙К). Теплопроводность пустотелой керамики зависит от марки и качества. Этот показатель может колебаться от 0,42 до 0,468 Вт/(м∙К).

Силикатный кирпич

Для его изготовления в качестве сырья используют природные материалы: песок, известь и воду. Иногда вводят шлак, золу. Эти составляющие влияют на качество. Изготавливают его в вариантах как полнотелый, так и пористый.

Силикатный кирпич наделен качествами:

  • Выдержать 100 циклов замораживания и размораживания.
  • Стоек к перепадам температур.
  • Его можно использовать в строительстве сооружений разной этажности.
  • Показатель влагопоглощения колеблется от 5 до 16%.
  • Не горит.
  • Не ядовит.
  • Срок службы не меньше 50 лет.
  • Способствует созданию комфортного климата в помещениях.

Теплопроводность изделий зависит от марки.

Газосиликат и вспененный бетон

Новые технологии позволяют изготавливать вспененные строительные материалы.

  1. Газосиликат отличается большим количеством воздушных камер. Образованы они реакцией извести с газообразователем. Теплопроводность такого материала колеблется в пределах 0,08 – 0,12 Вт/(м∙К); способен выдержать морозостойкость от 35 до 150 циклов. Изготавливают его разной пористости и прочности, в зависимости от его назначения.
  2. Пенобетон или вспененный бетон имеет пористую структуру. Размер воздушной камеры составляет примерно 5 мм. Концентрация камер достигает 80% общей массы. Материал прочный, обладает хорошей термоизоляцией 0,15 – 0,21 Вт/(м∙К) и звуковой изоляцией. Экологически нейтрален.

Гибкий облицовочный кирпич

Этот искусственный материал с имитацией кирпичной кладки. Этот материал обладает износостойкостью и стойкостью к атмосферным влиянием. Используют его для отделки зданий. Он выдерживает температурные перепады от -40 до +100°С. Удельный вес его легок, поэтому он не создает дополнительной нагрузки на фундамент.

Из-за его гибкости, процесс монтаж не сложен. Устанавливать его можно на старые стены, на штукатурку и пористую поверхность. Для увеличения теплосбережения используют дополнительную изоляцию. К примеру, нижним слоем минвата с армированной сеткой, а покрытие гибкой облицовкой.

Фасадный клинкерный кирпич

Фасадный клинкерный кирпич прочен и стоек к действиям природы. Он защищает стены от атмосферных влияний. На его изготовление клинкера используют воду и глину с дальнейшим обжигом.

В результате получается материал:

  • стойким к действию влаги;
  • не изменяет физические свойства под действием температур;
  • морозостоек;
  • длительного срока эксплуатации.

Производят его в разнообразной цветовой гамме. Внешний вид с имитацией фактуры под камень. Клинкерный фасадный кирпич используют для облицовки фасадов, для оформления заборов. Разные варианты укладки позволят создать различные рисунки.

Гиперпрессованный облицовочный кирпич

Изготавливают его прессованием высоким давлением, при котором молекулы свариваются между собой. Этот процесс гиперпрессования получил название холодной сварки. Полученный материал обладает прочностью превышающую силикатный кирпич. Используют его для декорирования стен, колон и других несущих конструкций.

Качества гиперпрессованного кирпича:

  • Теплопроводимость в пределах 0,41 – 1,1 Вт.
  • Материал не поддерживает горение.
  • Влагопоглощение от 3% до 7%.
  • Пригоден для покрытия конструкций не ограниченной этажности.
  • Требует гидрозащиты.

Промышленность изготавливает разные варианты с имитацией под природный камень и кирпичной кладки.

Уровень показателя силикатных изделий

Сфера применения силиката зависит от его качественных характеристик. Сюда входят теплопроводность, водопоглощение и морозостойкость кирпича. Силикат обладает повышенной склонностью к водопоглощению, поэтому он не используется при кладке фундаментов, подвалов или цоколей, так как эти сооружения имеют высокий уровень влажности.

Сухой силикатный материал обладает теплопроводностью (Т), составляющей 0,8 Вт/м*К. Керамические изделия имеют более высокую величину данного параметра, поэтому Т кладки сооружений из них составляет 0,9 Вт/м*К, что на 0,2 Вт/м*К больше, чем в первом случае. Показатель, составляющий 0,35-0,70 Вт/(м°С), а также средняя плотность сухого силикатного кирпича находятся в линейной зависимости, поэтому данная величина не зависит от количества и расположения пустот.

Силикатные изделия имеют значение теплового показателя переноса энергии меньше, чем керамические, поэтому они применяются для отделки фасадов. Для получения теплоэффективных стен применяется многопустотный силикатный кирпич, а также камень. Их плотность не более 1450 кг/м³. Эффект достигается только при аккуратном ведении кирпичной кладки, предполагающей использование нежирного кладочного раствора, который наносится тонким слоем и имеет плотность не более 1800 кг/м³. Раствор не должен заполнять пустоты в изделии.

Теплотехнический расчёт стены

Теплотехнический расчёт однородной наружной стены здания

Исходные данные

Назначение здания — административное.
Расчетная температурой наружного воздуха в холодный период года, text = -40 °С;
Расчетная средняя температура внутреннего воздуха здания, tint = +20 °С;
Средняя температура наружного воздуха отопительного периода, tht = -8 °С;
Продолжительность отопительного периода, zht = 241 сут.;
Нормальный влажностный режим помещения и условия эксплуатации ограждающих конструкций — А (сухой режим помещения в нормальной зоне влажности).
Коэффициент, учитывающий зависимость положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху, n = 1;
Коэффициент теплоотдачи наружной поверхности ограждающей конструкции, αext = 23 Вт/(м²•°С);
Коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, αint = 8.7 Вт/(м²•°С);
Состав наружной стены:

№ слояСлойδ, ммλ, Вт/(м °С)γ, кг/м 3
1Кладка из кирпича керамического пустотного1200.641300
2Минераловатный утеплитель1500.03960
3Кладка из кирпича керамического полнотелого3800.811600
4Штукатурка ц.п.200.911800

Определение требуемого сопротивления теплопередаче

Определим величину градусо-суток Dd в течение отопительного периода по формуле 1 [СП 23-101-2004]:

где tint — расчетная средняя температура внутреннего воздуха здания [табл.1, СП 23-101-2004];
tht — средняя температура наружного воздуха отопительного периода [табл.1, СП 23-101-2004];
zht — продолжительность отопительного периода [табл.1, СП 23-101-2004].

Определим требуемое значение сопротивления теплопередачи Rreq по табл. 3 [СП 50.13330.2012]

где Dd — градусо-сутки отопительного периода;
а=0,0003 [табл.3, СП 50.13330.2012]
b=1,2 [табл.3, СП 50.13330.2012]

Rreq = 0.0003*6748+1.2=3.2244 м 2 *°С/Вт,

Определение приведённого сопротивления теплопередаче стены

где αв — коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м 2 *°С), принимаемый по табл. 4 СП 50.13330.2012;
αн — коэффициент теплоотдачи наружной поверхности ограждающей конструкций для условий холодного периода, Вт/(м 2 *°С), принимаемый по таблице 6 СП 50.13330.2012;

Rs — термическое сопротивление слоя однородной части фрагмента (м 2 *°С)/Вт, определяемое по формуле:

δs — толщина слоя, м;
λs — расчетный коэффициент теплопроводности материала слоя, Вт/(м*°С), принимаемый согласно приложения Т СП 50.13330.2012.
ys уэ — коэффициент условий эксплуатации материала слоя, доли ед. При отсутствии данных принимается равным 1.

Расчетное значение сопротивления теплопередаче, R:

R > Rreq — Условие выполняется

Толщина конструкции, ∑t =675 мм;

Определение температурного перепада между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции

Значение выразим из формулы (5.4) СП 50.13330.2012

Δt н > Δt, 4.5 °C > 1.469 °C — условие выполняется.

Моделирование однородной стены в ЛИРА САПР. Решение стационарной задачи

Схема ограждающей конструкции:

Создаём задачу в 15-м признаке схемы. Рассмотрим участок стены, длиной 1 м

Шаг 1 геометрия

Шаг 2 Создание элементов конвекции

Моделируем стержни по наружной и внутренней граням стены. Стержням следует присвоить тип КЭ №1555. Они являются своего рода граничными условиями и, в то же время, воспринимают температуру воздуха.

Шаг 3 характеристики материалов

В окне задания типов жёсткости следует создать жёсткость: пластины Теплопроводность (пластины). В окне характеристик жёсткости вводятся параметры Н — толщина пластины, К — коэффициент теплопроводноти, С — коэффициент теплопоглощения, R0 — удельный вес.

Характеристики слоёв стены:
Кирпич облицовочный пустотелый Н=100 см, К=0.64 Дж/(м*с*°С);
Теплоизоляция Н=100 см, К=0.039 Дж/(м*с*°С);
Кирпич полнотелый Н=100 см, К=0.81 Дж/(м*с*°С);
Штукатурка ц.п. Н=100 см, К=0.76 Дж/(м*с*°С);

Для элементов конвекции, следует создать типы жёсткости Конвекция (двухузловые). Для таких элементов задаются коэффициенты конвекции внутреннего и внешнего слоя.

Шаг 4 Внешняя нагрузка

Через внешнюю нагрузку задаётся температура воздуха для элементов конвекции. Для этого, в разделе нагрузки, нужно открыть Заданная t.

Температура на внутренней поверхности ограждающей конструкции составляет 18.531 °С (результат замера температуры в узле).

Определение сопротивления теплопередачи конструкции по результатам расчёта ЛИРА САПР

Сопротивление теплопередачи определяется по формуле (5.4) СП 50.13330.2012:

Теплотехнический расчёт наружной стены здания с учётом неоднородности

Исходные данные

Для расчёта принимается конструкция стены, рассмотренная в предыдущем примере. Неоднородностью будет выступать кладочная сетка, служащая для крепления облицовки к несущему слою кладки. Параметры сетки: d=3 мм, шаг стержней 50х50 мм.

Определение приведённого сопротивления теплопередаче с учётом неоднородностей

Приведённое сопротивление теплопередаче фрагмента теплозащитной оболочки здания R пр , (м 2 *°C)/Вт, следует определять по формуле:

где R усл — осреднённое по площади условное сопротивление теплопередаче фрагмента теплозащитной оболочки здания либо выделенной ограждающей конструкции, (м 2 *°C)/Вт;
lj — протяжённость линейной неоднородности j-го вида, приходящаяся на 1 м 2 фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, м/м 2 ;
ΨI — удельные потери теплоты через линейную неоднородность j-го вида, Вт/(м*°С);
nk — количество точечных неоднородностей k-го вида, приходящихся на 1 м 2 фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, шт./м 2 ;
χk — удельные потери теплоты через точечную неоднородность k-го вида, Вт/°С;
ai — площадь плоского элемента конструкции i-го вида, приходящаяся на 1 м 2 фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, м 2 /м 2 ;

где Ai — площадь i-й части фрагмента, м 2 ;
Ui — коэффициент теплопередачи i-й части фрагмента теплозащитной оболочки здания (удельные потери теплоты через плоский элемент i-го вида), Вт/(м 2 *°С);

Определение удельных потерь теплоты кладочной сетки

Кладочная сетка, через которую осуществляется связь между облицовкой и несущим слоем, является линейной неоднородностью. Удельные потери теплоты через линейную неоднородность, определяются по СП 230.1325800.2015, приложение Г.7 Теплозащитные элементы, образуемые различными видами связей в трёхслойных железобетонных панелях.

Удельное сечение металла на 1 м.п. в рассматриваемом примере составит S*(1000/50)=3.14159*d 2 /4*(1000/50)=1.41372 см 2 /м

Удельные потери теплоты будут определяться по интерполяции между значениями, найденными по таблицам Г.42 и Г.43 СП 230.1325800.2015

Таблица Г.42 — Удельные потери теплоты Ψ, Вт/(м*°С). Сетка с удельным сечением металла на 1 п.м 0,53 см 2 /м

dут, ммλ = 0,2λ = 0,6λ = 1,8
500,0050,0080,011
800,0050,0070,009
1000,0040,0070,008
1500,0040,0050,006

Таблица Г.43 — Удельные потери теплоты Ψ, Вт/(м*°С). Сетка с удельным сечением металла на 1 п.м 2,1 см 2 /м

dут, ммλ = 0,2λ = 0,6λ = 1,8
500,0180,0310,043
800,0180,0280,035
1000,0170,0260,031
1500,0150,0210,024

Обозначения в таблицах:
— толщина слоя утеплителя dут, мм;
— теплопроводность основания λ, Вт/(м*°С), для кирпичной кладки из полнотелого керамического кирпича принимается λ = 0.56;
— удельное сечение металла на 1 м.п. сетки, см 2 /м.

Потери теплоты по таблице Г.42:

Потери теплоты по таблице Г.43:

Итоговое значение потерь теплоты:

Суммарная протяжённость линейных неоднородностей Σlj = 2 м.

Подставив полученные значения в формулу (Е.1), получим:

Моделирование неоднородной стены в ЛИРА САПР. Решение стационарной задачи

Для построения модели неоднородной стены, принимается модель, созданная на предыдущем этапе. Теплопроводные включения моделируются как стержневые элементы теплопроводности, которые пересекают три слоя стены: кладка, теплоизоляция, облицовка. Стержни расположены с шагом 40 см по высоте. Теплопроводность арматурной стали 58 м 2 *°С/Вт.

Температура на внутренней поверхности ограждающей конструкции составляет 18.087 °С. (среднее значение температуры на внутренней поверхности стены).

Определение сопротивления теплопередачи конструкции по результатам расчёта ЛИРА САПР

Сопротивление теплопередачи определяется по формуле (5.4) СП 50.13330.2012:

Сравнение результатов расчёта

Сравнение будем выполнять в табличной форме:

Что влияет на показатели?

Теплопроводность кладки из кирпича зависит не только от качества изделия, но и от смеси, с помощью которой укладывается конструкция.

Но все же решающую роль в выборе стройматериала играет его характеристика. Теплопроводность красного кирпича отличается в зависимости от таких факторов, как:

  • Пустотелость. Чем больше пустот в изделии, тем выше его теплоизоляционные качества.
  • Плотность. Высокое значение этого показателя прибавляет стройматериалу прочности, но уменьшает способность удерживать тепло.
  • Структура и форма пористости. Большое количество мелких и замкнутых пор снижает теплопроводность материала.
  • Состав. Стройматериалы, образованные из тяжелых атомов и атомных групп, снижают теплопроводность.

При выборе стройматериалов руководствуются не только одним свойством удерживать тепло. Учитывается, в каких климатических условиях будет использоваться кирпич и функциональное назначение планируемой конструкции. Для строительства дома лучше подойдет применение двойного пустотелого керамического блока, а для облицовки — лицевого клинкерного кирпича. Преимущество силикатных блоков состоит в невысокой цене, но влаговпитываемость не позволяет его использование в местах с повышенной влажностью. К выбору стройматериалов рекомендуется относиться ответственно, так как от этого зависит качество постройки.

Читать еще:  Калькулятор стен из кирпича
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector